Sitagliptin Accelerates Endothelial Regeneration after Vascular Injury Independent from GLP1 Receptor Signaling
نویسندگان
چکیده
Introduction DPP4 inhibitors (gliptins) are commonly used antidiabetic drugs for the treatment of type 2 diabetes. Gliptins also act in a glucose-independent manner and show vasoregenerative effects. We have shown that gliptins can remarkably accelerate vascular healing after vascular injury. However, the underlying mechanisms remain unclear. Here, we examined potential signaling pathways linking gliptins to enhanced endothelial regeneration. Methods and Results We used wild-type and GLP1 receptor knockout (Glp1r-/-) mice to investigate the underlying mechanisms of gliptin-induced reendothelialization. The prototype DPP4 inhibitor sitagliptin accelerated endothelial healing in both animal models. Improved endothelial growth was associated with gliptin-mediated progenitor cell recruitment into the diseased vascular wall via the SDF1-CXCR4 axis independent of GLP1R-dependent signaling pathways. Furthermore, SDF1 showed direct proproliferative effects on endothelial cells. Excessive neointimal formation was not observed in gliptin- or placebo-treated Glp1r-/- mice. Conclusion We identified the SDF1-CXCR4 axis as a crucial signaling pathway for endothelial regeneration after acute vascular injury. Furthermore, SDF1 can directly increase endothelial cell proliferation. Gliptin-mediated potentiation of endothelial regeneration was preserved in Glp1r-/- animals. Thus, gliptin-mediated endothelial regeneration proceeds through SDF-1/CXCR4 in a GLP1R-independent manner after acute vascular injury.
منابع مشابه
Endothelial p110γPI3K Mediates Endothelial Regeneration and Vascular Repair After Inflammatory Vascular Injury.
BACKGROUND The integrity of endothelial monolayer is a sine qua non for vascular homeostasis and maintenance of tissue-fluid balance. However, little is known about the signaling pathways regulating regeneration of the endothelial barrier after inflammatory vascular injury. METHODS AND RESULTS Using genetic and pharmacological approaches, we demonstrated that endothelial regeneration selectiv...
متن کاملThe chemokine receptor CX 3 CR1 coordinates monocyte recruitment and endothelial regeneration after arterial injury
Regeneration of arterial endothelium after injury is critical for the maintenance of normal blood flow, cell trafficking, and vascular function. Using mouse models of carotid injury, we show that the transition from a static to a dynamic phase of endothelial regeneration is marked by a strong increase in endothelial proliferation, which is accompanied by induction of the chemokine CX3CL1 in end...
متن کاملInsulin Resistance Impairs Circulating Angiogenic Progenitor Cell Function and Delays Endothelial Regeneration
OBJECTIVE Circulating angiogenic progenitor cells (APCs) participate in endothelial repair after arterial injury. Type 2 diabetes is associated with fewer circulating APCs, APC dysfunction, and impaired endothelial repair. We set out to determine whether insulin resistance adversely affects APCs and endothelial regeneration. RESEARCH DESIGN AND METHODS We quantified APCs and assessed APC mobi...
متن کاملInjury-Mediated Vascular Regeneration Requires Endothelial ER71/ETV2.
OBJECTIVE Comprehensive understanding of the mechanisms regulating angiogenesis might provide new strategies for angiogenic therapies for treating diverse physiological and pathological ischemic conditions. The E-twenty six (ETS) factor Ets variant 2 (ETV2; aka Ets-related protein 71) is essential for the formation of hematopoietic and vascular systems. Despite its indispensable function in ves...
متن کاملTransplantation of EPCs overexpressing PDGFR-β promotes vascular repair in the early phase after vascular injury
BACKGROUND Endothelial progenitor cells (EPCs) play important roles in the regeneration of the vascular endothelial cells (ECs). Platelet-derived growth factor receptor (PDGFR)-β is known to contribute to proliferation, migration, and angiogenesis of EPCs, this study aims to investigate effects of transplantation of EPCs overexpressing PDGFR-β on vascular regeneration. METHODS We transplanted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2018 شماره
صفحات -
تاریخ انتشار 2018